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Nonparabolicities and negative hole masses in quantum wells
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Abstract. It is shown that negative effective masses corresponding to the in-plane motion of holes
in the fourth group and zinc blend heterostructure quantum wells which are usually attributed to
the nonparabolicities caused by the repulsion and/or anticrossing of heavy and light hole subbands
results in to the competition of two factors: the warping of the bulk energy spectrum and the phase
shift of the size-quantized momentum due to heavy-light hole mixing.

Since the early studies of semiconductor heterostructures the problem of quantum well en-
ergy spectrum calculations was of prime importance. While the conduction size-quantized
subbands can be easily described and interpreted within the framework of ordinary single-
band quantum mechanics with all the problems lying in the determination of effective
boundary conditions for envelopes the valence band subbands are usually treated by means
of numerical methods because of there complex structure. The results of such numerical
simulations widely present in modern textbooks demonstrate strong nonparabolicities of
energy spectrum corresponding to the in-plane hole motion which are commonly associ-
ated with heavy-light hole subbands anticrossing. A common feature of the in-plane energy
spectrum is the existence of the subbands with negative hole effective masses. The mass
sign change could be treated in principal as a result of heavy-light hole subbands repulsion.
However detailed study of energy dispersion curves for a number of structure parameters
shows that it is not necessarily the case because the value of negative hole effective mass
and its existence does not directly depend on the heavy-light hole subbands separation. In
the present paper we investigate the origin of hole effective mass sign inversion. It is shown
that apart from the heavy-light hole anticrossing two important mechanisms take place: the
warping of heavy hole bands which is present already in the bulk and the in-plane quasimo-
mentum dependent phase shift of the quantized quasimomentum due to heavy-light hole
mixing.

We start from the standard Luttinger Hamiltonian:
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Energy spectrum of the Hamiltonian possesses two double-degenerate branches of heavy
and light holes:

E = P T- IQ 2 + iL 2 + IM2. (2)

A qualitative picture of level anticrossing can be obtained if one averages the Hamil-
tonian (1) over the size-quantized subband wave function localized in the well [ 1. Odd
terms in respect to k, (L-terms) vanishes after this procedure. The retaining Hamiltonian
can be block-diagonalized and the resulting spectrum demonstrate anticrossing of heavy
and light hole subbands.

Note however that the M-term contribution to energy spectrum is of the 4-th order in
respect to the in-plane quasimomentumn k1 . Hence anticrossing described by the M-term
in the Hamiltonian has nothing in common with possible effective mass sign change which
is to be described by quadratic in k1 terms.

Let us turn to the bulk spectrum (2). A qualitative understanding of the peculiarities of
energy spectrum in size-quantized structures can be obtained if we simply take k, equal
constant kzn.

To estimate the effective masses we can omit M-term in the equation (2) and expand
energy expression over k2 up to the first order. It is useful to present the result both in
terms of Luttinger and A, B, C parameters:

Eh, (y ::F 2 y2) + Y1 4-± Y2 :F -- 2ki (3)
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The term with the coefficient y3 in (3) arises from the L-term in the Hamiltonian which
is responsible for warping of bulk energy spectrum in the plane containing quantized z-
axes. (Note that M-term also describes warping but in xy-plane dosn't contain quantized
axis). It immediately follows from (3) that a negative contribution to heavy hole subband
effective mass exists always. This contribution presents if and only if warping is taken into
account and is absent in the so-called spherical approximation [ , ].

For all most popular semiconductors such as GaAs (y1 = 7.65, y2 = 2.41,
y3 = 3.28), Si (yi = 4.22, y2 = 0.39, y/3 = 1.44), Ge (yi = 13.35, y2 = 4.25,
y3 = 5.69) (see e.g. []) this contribution exceeds the first two terms in square brackets
and the coefficient at k2 in (3) is negative. Because warping is the characteristic of bulk
energy spectrum the coefficient at k2 in (3) can be considered as a bare effective mass for
the in-plane motion in quantum wells which is negative for heavy holes. In the spherical
approximation (y3 = Y2) the coefficient at k1 in (3) is positive in common semiconductors.

In the expression (3) we don't yet take into account the dependence of size-quantized
momentum kzn upon k1 which results from heavy-light hole mixing at semiconductor
heterointerface. At small k1 we can write

kz, = kzno + aLk2, (4)

where L is the quantum well width. It is natural to interpret the second term in (4) as a
phase shift due to heavy-light hole mixing at semiconductor heterointerface. Collecting
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the contributions from both (3) and (4) we obtain for the in-plane effective masses the
following expressions

1 32
=- ?'1 + 2 - + 2uhn(Yl - 2y 2 )kzOL, (5)
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If a > 0 then the phase shift (last term in the expressions (5), (6)) pushes the ef-

fective mass to positive values. To calculate a one should find the general solution of
the Schrddinger equation with the Hamiltonian (1) satisfying proper boundary conditions.
Widely accepted choice of boundary conditions for semiconductor heterostructures assumes
continuity of the wave functions

f(zO-) = if(zO+) (7)

and the "currents"
(ZO-) = (ZO±) (8)

at the heterointerface located at zo, where j is the "current" operator which can be obtained
by the integration of the Hamiltonian over the heterointerface [ 1. The problem can be
studied analytically in the case of infinitely high barriers (a box or a semiconductor film).
For the box boundary conditions reduces to

S(0) = (L) =0. (9)

For the first time this approach was realized in [] where however because of sign drop
an erroneous conclusion was made that the highest hole subbands in Si and Ge films
possesses negative (electron-like) masses. In the case of infinite barriers for the first heavy
hole subband we obtain

3 y32 y + 221 + cosO
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where:
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From (5), (10) it follows that for common semiconductors hole effective mass for the top-
most subband is positive. However if one instead of (7), (8) takes the generalized boundary
conditions [ ,, I describing heavy-light hole mixing already at normal incidence (k1 = 0)
the coefficient a can be depressed and the effective mass can become negative. Numer-
ical diagonalization of matrix 16 x 16 resulting from the conditions (7), (8) shows that at
lower barrier the k_--independent part of quantized quasimomentum decreases. In the
expression (11) it corresponds to the reduction of kzho resulting in the reduction of the de-
nominator containing sin-function in (10). So for quantum wells with finite barrier height
the tendency to the negative masses in the topmost subband is further supressed. For higher
subbands the expression for a is similar to (10) however its sign oscillates with subband
number becuase of the variation of the sin sign as kz, changes over 7r/L. Another source of
a sign variation is the reduction of barrier height. If kz, for heigher barrier slighly exceeds
7r/L then for smaller barrier it will pass below the 7r/L and the sign of a will be changed.
Hence the subband curvature for different barrier height can be dufferent.
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